Enhancing therapeutic efficacy: In vivo mechanisms and biochemical effects of lycopene encapsulated in nanomicelles for acute inflammation and lipid metabolism.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Luciana Magalhães Rebelo Alencar, Yu Cai, Patrícia Martins Rodrigues E Silva Martins, Pierre Basilio Almeida Fechine, Tatiana Paula Teixeira Ferreira, Álefe Roger Silva França, Natália Cristina Gomes-da-Silva, David Majerowicz, Julia Moura-Silva, Stephanie Neves-Silva, Franciana Pedrochi, Maria Nayane Queiroz, Eduardo Ricci-Junior, Celso Sant'anna, Ralph Santos-Oliveira, Isabelle Xavier-de-Britto

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Netherlands : European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 736311

This study focuses on developing, characterizing, and evaluating lycopene nanomicelles formulations for their therapeutic potential in treating acute inflammation and obesity. Lycopene, a hydrophobic carotenoid with potent antioxidant, anti-inflammatory, and anticancer properties, faces challenges in bioavailability due to its poor solubility. To address this, the study utilized nanocarrier systems like liposomes, nanoparticles, and nanoemulsions to enhance the solubility, stability, and bioavailability of lycopene. The lycopene nanomicelles demonstrated significant anti-inflammatory and anticancer activities through multiple mechanisms. It inhibited the NF-κB pathway, reducing the expression of pro-inflammatory mediators, and modulated apoptotic pathways, leading to increased apoptosis and reduced cell proliferation in cancer cells. Furthermore, lycopene enhanced phase II detoxifying enzymes activity, interfered with gap junction communication, and potentially improved DNA repair mechanisms, contributing to its anticancer efficacy. In vivo studies revealed that lycopene nanomicelles effectively reduced leukocyte and neutrophil counts in an acute inflammation model, especially at higher doses, highlighting its potential as a nanodrug for inflammation management. However, the study found no significant alteration in triglyceride levels, indicating a need for further investigation into the effects of lycopene and its nanostructured forms on lipid metabolism. Biochemical analyses showed variations in liver enzyme levels, suggesting protective effects on the liver but also indicating potential pancreatic activity or stress and low glucose levels. These findings underscore the necessity for comprehensive safety evaluations. Overall, this research underscores the promising therapeutic applications of lycopene nanomicelles in inflammation and cancer while emphasizing the importance of addressing safety and metabolic effects for effective clinical translation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH