Gain-of-Function Chromatin Remodeling Activity of Oncogenic FOXL2C134W Reprograms Glucocorticoid Receptor Occupancy to Drive Granulosa Cell Tumors.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Allison Brodsky, Katherine Calzoncinth, Joseph Celestino, Alejandra Flores Legarreta, P Andrew Futreal, David M Gershenson, R Tyler Hillman, Eleonora Y Khlebus, Barrett Lawson, Jian Li, Nghi Nguyen, Reid T Powell, Anil K Sood, Clifford C Stephan, Shiro Takamatsu, Veena K Vuttaradhi, Thomas Welte

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Cancer research , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 736397

Adult type ovarian granulosa cell tumors (AGCT) are rare malignancies with the near universal c.C402G (p.Cys134Trp) somatic mutation in FOXL2, a forkhead box family transcription factor important for ovarian function. Relapsed AGCT is incurable, but the mechanism of the unique FOXL2 mutation could confer therapeutic vulnerabilities. To identify FOXL2C134W-dependent pharmacologic synergies, we created and characterized endogenous FOXL2 isogenic AGCT cells and an AGCT tumoroid biobank. A drug screen identified that glucocorticoids promote FOXL2C134W-dependent AGCT growth. Epigenetic investigation revealed that the Cys134Trp mutation exposes latent DNA sequence-specific chromatin remodeling activity in FOXL2. FOXL2C134W-dependent chromatin remodeling activity redirected glucocorticoid receptor chromatin occupancy to drive hyaluronan synthase 2 gene expression and increase extracellular hyaluronan secretion. Treatment of AGCT models with hyaluronidase reduced viability, and dexamethasone rescued this effect. Combinatorial drug-drug interaction experiments demonstrated that dexamethasone antagonizes the potency of paclitaxel, a chemotherapy agent frequently used in the treatment of AGCT. Thus, gain-of-function pioneering activity contributes to the oncogenic mechanism of FOXL2C134W and creates a potentially targetable synergy with glucocorticoid signaling. Significance: Glucocorticoids promote granulosa cell tumor growth via epigenetic coregulation with the disease driver FOXL2C134W, providing mechanistic insight into disease oncogenesis and uncovering a potential treatment strategy.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH