Dynamic regulation of ferroelectric polarization using external stimuli for efficient water splitting and beyond.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Chris Bowen, Sundaram Chandrasekaran, Haitao Huang, Qiong Liu, Yongping Liu, Huidan Lu, Dingrong Qiu, Huihui Wang, Qingping Wang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Chemical Society reviews , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 737438

 Establishing and regulating the ferroelectric polarization in ferroelectric nano-scale catalysts has been recognized as an emerging strategy to advance water splitting reactions, with the merits of improved surface charge density, high charge transfer rate, increased electronic conductivity, the creation of real active sites, and optimizing the chemisorption energy. As a result, engineering and tailoring the ferroelectric polarization induced internal electric field provides significant opportunities to improve the surface and electronic characteristics of catalysts, thereby enhancing the water splitting reaction kinetics. In this review, an interdisciplinary and comprehensive summary of recent advancements in the construction, characterization, engineering and regulation of the polarization in ferroelectric-based catalysts for water splitting is provided, by exploiting a variety of external stimuli. This review begins with a detailed overview of the classification, benefits, and identification methodologies of the ferroelectric polarization induced internal electric field
  this offers significant insights for an in-depth analysis of ferroelectric-based catalysts. Subsequently, we explore the underlying structure-activity relationships for regulating the ferroelectric polarization using a range of external stimuli which include mechanical, magnetic, and thermal fields to achieve efficient water splitting, along with a combination of two or more fields. The review then highlights emerging strategies for multi-scale design and theoretical prediction of the relevant factors to develop highly promising ferroelectric catalysts for efficient water splitting. Finally, we present the challenges and perspectives on the potential research avenues in this fascinating and new field. This review therefore delivers an in-depth examination of the strategies to engineer the ferroelectric polarization for the next-generation of water electrolysis devices, systems and beyond.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH