A physical optics formulation of Bloch waves and its application to 4D STEM, 3D ED and inelastic scattering simulations.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Budhika G Mendis

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Acta crystallographica. Section A, Foundations and advances , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 737463

Bloch waves are often used in dynamical diffraction calculations, such as simulating electron diffraction intensities for crystal structure refinement. However, this approach relies on matrix diagonalization and is therefore computationally expensive for large unit cell crystals. Here Bloch wave theory is re-formulated using the physical optics concepts underpinning the multislice method. In particular, the multislice phase grating and propagator functions are expressed in matrix form using elements of the Bloch wave structure matrix. The specimen is divided into thin slices, and the evolution of the electron wavefunction through the specimen calculated using the Bloch phase grating and propagator matrices. By decoupling specimen scattering from free space propagation of the electron beam, many computationally demanding simulations, such as 4D STEM imaging modes, 3D ED precession and rotation electron diffraction, phonon and plasmon inelastic scattering, are considerably simplified. The computational cost scales as {\cal O}({N^2} ) per slice, compared with {\cal O}({N^3} ) for a standard Bloch wave calculation, where N is the number of diffracted beams. For perfect crystals the performance can at times be better than multislice, since only the important Bragg reflections in the otherwise sparse diffraction plane are calculated. The physical optics formulation of Bloch waves is therefore an important step towards more routine dynamical diffraction simulation of large data sets.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH