3D-printed radiopaque episcleral plaques with radioactive collimating cavities for enhanced dose delivery in brachytherapy.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mahdokht Akbari Taemeh, Marc-André Fortin, Théophraste Lescot, Souheib Zekraoui

Ngôn ngữ: eng

Ký hiệu phân loại: 006.3 Artificial intelligence

Thông tin xuất bản: United States : Brachytherapy , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 737517

PURPOSE: Episcleral plaque brachytherapy (EPBT) is a well-established treatment. However, the lateral dose to healthy tissues, such as the sclera, retina, and optic nerve is often problematic and results in side effects. This study proposes an innovative approach based on the 3D-printing of radiopaque polymer plaques featuring cylindrical radioactive cavities (CRC) with a potential collimating effect on radiation delivery to tumors. METHODS AND MATERIALS: A CAD model based on the COMS protocol was created and 3D-printed using radiopaque PEEK polymer. Cylindrical cavities (1 mm depth/diameter) were evenly spaced on the plaque's inner surface. Two radioactive layouts (RL RESULTS: Radiopaque CRC EPs showed higher central axis dose deposition while minimizing lateral overexposure compared to COMS and SEP plaques, while also providing robust back-shielding. Dose profiles from RL CONCLUSIONS: 3D-printed radiopaque EPs with radioactivity encapsulated in cylindrical cavities demonstrated the ability to achieve more forward-projected dose profiles in EPBT. This fabrication design and a modulated radioactivity distribution across the EP surface would enable more precise and deeper dose delivery while reducing radiation exposure to lateral healthy tissues.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH