Massively parallel sequencing (MPS), a well-established strategy for forensic DNA profiling, enables the simultaneous sequencing of multiple targeted loci of multiple samples at a single-base resolution with high coverage. In this study, we developed a novel typing system by combining solution-based hybrid capture methods with MPS to target as many as 107 short tandem repeats (STRs) and 292 single nucleotide polymorphisms (SNPs) in the Han Chinese population. Completely accurate and concordant STR genotypes were obtained when compared to typing results generated from conventional capillary electrophoresis analysis, with six loci exhibiting inferior performance due to allele dropout or even locus dropout. The locus detection success reached 85.2 % for STRs at a DNA input of 10 ng and 95.61 % for SNPs at a DNA input of 5 ng. Mixture studies substantiated the considerable potential of our system in identifying minor contributor alleles at both STR and SNP loci. Additionally, the system demonstrated full inferential abilities in distinguishing first-degree kinship from unrelated individual pairs and achieved significant effectiveness of 99.78 % and 80.2 % for the identification of second- and third-degree kinship, respectively. These findings indicated that our novel typing system is highly discriminative and informative when used in the Han Chinese population and would be highly efficient for use in paternity testing and complex kinship analysis.