Neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), arise from complex interactions between genetic factors, environmental exposures, and aging. Additionally, gut dysbiosis has been linked to systemic inflammation and neurodegeneration. Advances in microbiome and metabolome profiling techniques have provided deeper insights into how alterations in gut microbiota and dietary patterns affect metabolic pathways and contribute to the progression of NDs. This review explores the profiles of gut microbiome and metabolome derived biomarkers and their roles in NDs. Across phyla, families, and genera, we identified 55 microbial alterations in PD, 24 in AD, 4 in ALS, and 17 in MS. Some notable results include an increase in Akkermansia in PD, AD, and MS and a decrease in short-chain fatty acids (SCFAs) in PD and AD. We examined the effects of probiotics, prebiotics, fecal microbiota transplants (FMT), sleep, exercise, and diet on the microbiota, all of which contributed to delayed onset and alleviation of symptoms. Further, artificial intelligence (AI) and machine learning (ML) algorithms applied to omics data have been crucial in identifying novel therapeutic targets, diagnosing and predicting prognosis, and enabling personalized medicine using microbiota-modulating therapies in NDs patients.