Recent advances and future challenges in predictive modeling of metalloproteins by artificial intelligence.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tae Su Choi, Hugh I Kim, Min Kyung Kim, Soohyeong Kim, Wonseok Lee

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Molecules and cells , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 737986

Metal coordination is essential for structural/catalytic functions of metalloproteins that mediate a wide range of biological processes in living organisms. Advances in bioinformatics have significantly enhanced our understanding of metal-binding sites and their functional roles in metalloproteins. State-of-the-art computational models developed for metal-binding sites seamlessly integrate protein sequence and structural data to unravel the complexities of metal coordination environments. Our goal in this mini-review is to give an overview of these tools and highlight the current challenges (predicting dynamic metal-binding sites, determining functional metalation states, and designing intricate coordination networks) remaining in the predictive models of metal-binding sites. Addressing these challenges will not only deepen our knowledge of natural metalloproteins but also accelerate the development of artificial metalloproteins with novel and precisely engineered functionalities.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH