In lipid metabolism, the fatty acid (FA) elongation system synthesises a wide array of FAs, crucial for various biological functions. The role of this system is to lengthen FA carbon chains to produce FAs with ≥C16, and notably, very long-chain FAs (VLCFAs, C24-C26) and ultra long-chain FAs (ULCFAs, C28 to ≥C36). Elongation occurs in the endoplasmic reticulum (ER) through the actions of a complex of four ER-embedded enzymes, which includes the ELOVL proteins. Together with desaturases that introduce double bonds, these processes significantly increase the variety of FAs. VLCFAs and ULCFAs are required for the biosynthesis of complex lipids, notably glycero(phospho)lipids, ether(phospho)lipids and sphingolipids. The FA elongation system is therefore fundamental for membrane biogenesis and lipid homeostasis, and also for signalling pathways associated with inflammation and cell proliferation. This review focuses on the elongase enzymes, encoded by the ELOVL genes, which catalyze the first and rate-limiting step of the FA elongation cycle. We summarize the physiological roles of the elongase system, with emphasis on the less-characterized ULCFAs, their biological functions, and the functional tools, biomarkers and lipidomic studies used to study them. Additionally, we discuss how ELOVL enzyme defects contribute to disorders at the intersection of metabolic and neurodegenerative conditions, driven by disrupted lipid metabolism and misfolded enzymes in the ER and Golgi.