Clinico-genomic features predict distinct metastatic phenotypes in cutaneous melanoma.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tyler J Aprati, Kelly P Burke, Chi-Ping Day, Rajaa El Meskini, Hannah Faulkner, Catherine H Feng, Marc Glettig, Maryclare Griffith, Alexander Gusev, Rizwan Haq, F Stephen Hodi, Marta M Holovatska, Jeffrey J Ishizuka, Justin Jee, Kenneth L Kehl, Karam Khaddour, Daniel Lee, David Liu, Michael P Manos, Zoe Weaver Ohler, Alexander Pan, Nikolaus Schultz, Alexander N Shoushtari, Giuseppe Tarantino

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 738360

Metastasis drives mortality and morbidity in cancer. While some patients develop broad metastatic disease across multiple organs, others exhibit organ-specific spread. To identify mechanisms underlying metastatic organotropism, we analyzed clinico-genomic data from over 7,000 patients with metastatic cutaneous melanoma in three independent cohorts (one primary discovery and two validation cohorts including a nationwide electronic health record-derived deidentified database), leveraging machine learning approaches to clinical data. We found that female sex and increased tumor mutational burden associate with decreased metastatic potential, while older age associates with more lung and adrenal metastases. Using unsupervised analyses, patients clustered into five metastatic patterns: a "highly metastatic" cluster characterized by involvement of many organs, a "low metastatic" cluster characterized by few metastatic sites (mostly lymph node metastases), and three additional clusters each characterized by metastasis to specific sites (brain, lung, liver). Mutations in
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH