β-Xylosidase, an important hydrolase, catalyzes the degradation of xylan and xylosides, demonstrating significant potential for applications in biomass conversion and green synthesis. In recent years, with the rise of green chemistry, research on β-xylosidase in sustainable chemical synthesis has garnered increasing attention. Lignocellulosic biomass, a readily available and sustainable natural resource, requires the involvement of β-xylosidase for the production of biofuels. This enzyme not only efficiently degrades the xylan components of plant cell walls to produce biofuels but also synthesizes high-value glycosides through transglycosylation reactions, providing an eco-friendly catalytic tool for green chemical synthesis. This review summarizes the structural characteristics and catalytic mechanisms of β-xylosidase, along with related techniques to enhance its catalytic performance, such as enzyme immobilization, enzyme fusion technology, genetic engineering, and enzyme synergy. It focuses on recent advancements in its green applications, including the production of active compounds, waste degradation, bioenergy development, pulp bleaching, and deinking of waste paper (as shown in Fig. 1). Additionally, in light of current research trends, this review offers insights into the future prospects and challenges of β-xylosidase in green synthesis, aiming to provide valuable references for related fields.