Neurological disorders arising from structural and functional disruptions in the nervous system present major global health challenges. This review examines the intricacies of various cellular signaling pathways, including Nrf2/Keap1/HO-1, SIRT-1, JAK/STAT3/mTOR, and BACE-1/gamma-secretase/MAPT, which play pivotal roles in neuronal health and pathology. The Nrf2-Keap1 pathway, a key antioxidant response mechanism, mitigates oxidative stress, while SIRT-1 contributes to mitochondrial integrity and inflammation control. Dysregulation of these pathways has been identified in neurodegenerative and neuropsychiatric disorders, including Alzheimer's and Parkinson's diseases, characterized by inflammation, protein aggregation, and mitochondrial dysfunction. Additionally, the JAK/STAT3 signaling pathway emphasizes the connection between cytokine responses and neuroinflammation, further compounding disease progression. This review explores the crosstalk among these signaling networks, elucidating how their disruption leads to neuronal decline. It also addresses the dual roles of these pathways, presenting challenges in targeting them for therapeutic purposes. Despite the potential benefits of activating neuroprotective pathways, excessive stimulation may cause deleterious effects, including tumorigenesis. Future research should focus on designing multi-targeted therapies that enhance the effectiveness and safety of treatments, considering individual variabilities and the obstacles posed by the blood-brain barrier to drug delivery. Understanding these complex signaling interactions is crucial for developing innovative and effective neuroprotective strategies that could significantly improve the management of neurological disorders.