The regenerative capacity of hair follicles is fundamentally influenced by the intricate interactions between hair follicle stem cells (HFSCs) and their microenvironment. Our study presents a novel strategy for hair regeneration, highlighting the synergistic relationship between dermal papilla cell-derived exosomes (DPC-Exos) and collagenous sequences of Human a1(XVII) Chain (CS-COL17A1) in modulating HFSC activity via the hsa-novel-238a-CASP9 axis. We characterized DPC-Exos using nanoparticle tracking analysis and transmission electron microscopy and confirmed, their purity with the exosomal markers CD81, CD63, and CD9.A dose-dependent CCK-8 assay showed that both DPC-Exos and CS-COL17A1 significantly improved HFSC viability. Scratch and Transwell assays showed improved HFSC migration after treatment. MiRNA sequencing revealed a significant upregulation of hsa-novel-238a in HFSCs after treatment with DPC-Exos and CS-COL17A1, suggesting its involvement in the regulation of HFSCs activity. A dual-luciferase assay confirmed that hsa-novel-238a directly targets the CASP9 gene, elucidating the underlying molecular mechanisms. The combined application of DPC-Exos and CS-COL17A1 significantly improved HFSC migration and proliferation (p <
0.01), highlighting the importance of the hsa-novel-238a-CASP9 axis. This research provides insights into the regulatory network of exosomes and CS-COL17A1, paving the way for innovative therapeutic approaches to treat hair loss and enhance hair follicle regeneration through modulation of the hsa-novel-238a-CASP9 axis.