Sleep deprivation, both daily and occupational, has become a prevalent issue in modern society, significantly affecting individuals' attention functions. Traditionally, attention was viewed as a singular, unified system, but advances in neuroscience have revealed it as a network involving coordinated interactions across multiple brain regions. Posner and Petersen's Attention Network Theory delineates three distinct subcomponents - alerting, orienting, and executive control - based on anatomical localization and neurobiochemical mechanisms. However, most studies on sleep deprivation often overlook these subcomponents, treating attention as a generalized process. This paper aims to address this gap by investigating the effects of total sleep deprivation (TSD) on these attentional subcomponents and their potential neural mechanisms focusing on both the general healthy population and specific occupational groups. Using the Attention Network Test (ANT) paradigm and its variants, the findings reveal that TSD differentially affects the three subcomponents of attentional networks, with occupation-specific differences. Notably, the impact of TSD on executive control exhibits greater variability. The state instability hypothesis and local sleep theory are proposed to explain these neural mechanisms, suggesting that TSD disrupts attentional networks through an interplay of top-down state instability and bottom-up local sleep processes. Future research should refine experimental paradigms related to attentional networks, integrate cognitive neuroscience methodologies and computational modeling approaches, and expand investigations into sleep restriction. Such advancements will provide a more comprehensive understanding of how TSD affects attentional networks and further elucidate the interplay between the state instability hypothesis and local sleep theory.