The biophotoelectrochemical process (BPECs) integrates the light-absorbing capabilities of nano-semiconductors with the catalytic efficiency of microorganisms, demonstrating significant potential for the development, utilization, transformation, and ecological restoration of water resources. In aquatic environments, extracellular polymeric substances (EPS) serve as a critical interfacial barrier between microorganisms and semiconductor materials, with the underlying electron transfer mechanisms playing a pivotal role in determining the efficiency of bio-photochemical reactions. Despite their importance, the rapidity and complexity of the electron transfer process within EPS pose significant challenges to a comprehensive understanding of BPECs. In this study, an in-situ characterization strategy was employed to rapidly and accurately analyze the components and pathways of photogenerated electron transfer involving EPS at interfaces. The findings indicate that EPS significantly accelerates the transfer of photogenerated electrons within BPECs. Specifically, proteins and redox-active substances within EPS act as efficient conduits for electron transfer, accounting for up to 84.2% of the increased speed in electron transfer rates at bio-abiotic interfaces. Conversely, polysaccharides within EPS impede the electron transfer process but serve as substrates that facilitate methane (CH