Although aerobic composting is capable of aging microplastics (MPs), the influence of size on MPs aging during composting and loading of cadmium (Cd) remains unclear. Therefore, we investigated variations in the physicochemical properties of polyethylene terephthalate microplastics (PET-MPs) with different sizes (1.0 -5.0, 0.2 -1.0, and 0.05 -0.2 mm) during composting and the concentration of Cd accumulated on the surface of different-sized aged PET-MPs. The results indicated that PET-MPs exhibited size-dependent as they aged during composting, with smaller sizes aging faster. After composting, the 0.05 -0.2 mm PET