A deep learning strategy to identify cell types across species from high-density extracellular recordings.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Maxime Beau, Young Yoon Chung, Beverley A Clark, Dana Cohen, Federico D'Agostino, Nathan J Hall, Michael Häusser, Marie E Hemelt, David J Herzfeld, Court Hull, Dimitar Kostadinov, Stephen Kyranakis, Agoston Lajko, Stephen G Lisberger, Michael Maibach, M Gabriela Martínez Lopera, Javier F Medina, Francisco Naveros, Shogo Ohmae, Marlies Oostland, Alvaro Sánchez-López, Hannah N Stabb, Marie Zedler

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Cell , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 739328

High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but fail to reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals and reveal the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetics and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers. We train a semi-supervised deep learning classifier that predicts cell types with greater than 95% accuracy based on the waveform, discharge statistics, and layer of the recorded neuron. The classifier's predictions agree with expert classification on recordings using different probes, in different laboratories, from functionally distinct cerebellar regions, and across species. Our classifier extends the power of modern dynamical systems analyses by revealing the unique contributions of simultaneously recorded cell types during behavior.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH