An immunoactive complex consisting of a polyethyleneimine derivative (2E'), paclitaxel (PTX), and cyclic dinucleotide (CDN) was developed for chemoimmunotherapy of solid tumors. Each component uniquely contributes to stimulating innate immune response to tumors: 2E' carries PTX and CDN while stimulating antigen-presenting cells, PTX induces immunogenic cell death, and CDN activates the STING pathway. A single intratumoral injection of 2E'/PTX/CDN inhibited the growth of MOC1 oral squamous cell carcinoma and KPCY (2838c3) pancreatic tumors, achieving complete tumor regression in 80-100 % of mice. However, 2E'/PTX/CDN showed limited therapeutic efficacy with immune-cold B16F10 melanoma, accompanied by the increase of innate immune cells in the tumor draining lymph nodes peaking on day 5 post-administration and subsiding thereafter. The addition of a complex of 2E' and siRNA targeting PD-L1 (siPD-L1) at an optimal 5-d interval improved the response in B16F10 melanoma, resulting in tumor-free survival in 50 % of mice and rejection of live tumor rechallenge in 67 % of surviving animals. Consistent with the function of each component, the timed combination of 2E'/PTX/CDN and 2E'/siPD-L1 increased the fractions of mature dendritic cells and M1 macrophages, prevented the increase of regulatory T cells in tumor-draining lymph nodes, and increased melanoma antigen-specific CD8