Given the inherent complexity and heterogeneity of tumors, current therapeutic approaches often fall short in meeting prognostic requirements. Starvation therapy (ST) utilizing glucose oxidase (GOx) has emerged as a promising strategy, specifically targeting tumor glucose consumption to disrupt nutrient supply. However, the therapeutic potential of GOx is significantly hampered by its inherent limitations as a protein, particularly its poor stability and short in vivo half-life. In recent years, the development of nanocarriors has provided an effective platform for intravenous and local tumor delivery of GOx. This review systematically examines three key strategies in GOx delivery: stimulus-response, biofilm modification, and local delivery. The progress in various carrier systems for GOx-mediated tumor therapy is comprehensively summarized, providing valuable insights for nanocarrier design. Furthermore, the existing challenges and future directions to advance the development of GOx-based tumor therapies are critically analyzed.