Cardiovascular diseases (CVDs), particularly myocardial infarction (MI), are the leading cause of mortality worldwide and significantly contribute to morbidity. This study incorporated varying concentrations of crocin (CRO) into alginate hydrogel (ALG) to enhance cardiac function. Following synthesizing the hydrogel, it was characterized through a series of experiments, including morphological assessment, rheological analysis, cytocompatibility testing, and cellular viability evaluation. The therapeutic efficacy of the synthesized hydrogel in combination with bone-derived mesenchymal stem cells (BMSCs), was then investigated in a rat model of MI using echocardiography, histology, and immunohistochemistry. The results indicated that the prepared hydrogels exhibited adequate porosity and favorable rheological properties. Notably, CRO at lower concentrations significantly improved the viability of BMSCs. To evaluate the therapeutic potential in vivo, the ALG/CRO hydrogel loaded with BMSCs was implanted into the MI region of the rat model. The findings demonstrate that the ALG/CRO hydrogel can significantly reduce scar thickness and promote angiogenesis, thereby improving the recovery of cardiac function. Consequently, the ALG/CRO hydrogel has the potential to serve as an injectable carrier for the delivery of cells aimed at cardiac regeneration.