Deep Learning-Driven Automated High-Content dSTORM Imaging with a scalable Open Source Toolkit.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Luise Appeltshauser, Kathrin Doppler, Katrin G Heinze, Janis T Linke

Ngôn ngữ: eng

Ký hiệu phân loại: 304.61 Population characteristics

Thông tin xuất bản: United States : Biophysical reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 739668

Super-resolution microscopy offers the ability to visualize molecular structures in biological samples with unprecedented detail. However, the full potential of these techniques is often hindered by a lack of automated, user-independent workflows. Here, we present an open-source toolkit that automates dSTORM super-resolution microscopy using deep learning for segmentation and object detection. This standalone program enables reliable segmentation of diverse biomedical images, even in low-contrast samples, surpassing existing solutions. Integrated into the imaging pipeline, it rapidly processes high-content data in minutes, reducing manual labor. Demonstrated by biological examples, such as microtubules in cell culture and the βII-spectrin in nerve fibers, our approach makes super-resolution imaging faster, more robust, and easy to use, even by non-experts. This broadens its potential applications in biomedicine, including high-throughput experimentation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH