BACKGROUND AND OBJECTIVE: Recent investigations into Low-Dose Computed Tomography (LDCT) reconstruction methods have brought Model-Based Data-Driven (MBDD) approaches to the forefront. One prominent architecture within MBDD entails the integration of Model-Based Iterative Reconstruction (MBIR) with Deep Learning (DL). While this approach offers the advantage of harnessing information from sinogram and image domains, it also reveals several deficiencies. First and foremost, the efficacy of DL methods within the realm of MBDD necessitates meticulous enhancement, as it directly impacts the computational cost and the quality of reconstructed images. Next, high computational costs and a high number of iterations limit the development of MBDD methods. Last but not least, CT reconstruction is sensitive to pixel accuracy, and the role of loss functions within DL methods is crucial for meeting this requirement. METHODS: This paper advances MBDD methods through three principal contributions. Firstly, we introduce an innovative Frequency Adjustment Network (FAN) that effectively adjusts both high and low-frequency components during the inference phase, resulting in substantial enhancements in reconstruction performance. Second, we develop the Momentum-based Frequency Adjustment Network (MFAN), which leverages momentum terms as an extrapolation strategy to facilitate the amplification of changes throughout successive iterations, culminating in a rapid convergence framework. Lastly, we delve into the visual properties of CT images and present a unique loss function named Focal Detail Loss (FDL). The FDL function preserves fine details throughout the training phase, significantly improving reconstruction quality. RESULTS: Through a series of experiments validation on the AAPM-Mayo public dataset and real-world piglet datasets, the aforementioned three contributions demonstrated superior performance. MFAN achieved convergence in 10 iterations as an iteration method, faster than other methods. Ablation studies further highlight the advanced performance of each contribution. CONCLUSIONS: This paper presents an MBDD-based LDCT reconstruction method using a momentum-based frequency adjustment network with a focal detail loss function. This approach significantly reduces the number of iterations required for convergence while achieving superior reconstruction results in visual and numerical analyses.