Sparse-view CBCT reconstruction using meta-learned neural attenuation field and hash-encoding regularization.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Seungryong Cho, Se Young Chun, Taehee Kim, Jongho Lee, Dongmyung Shin, Heejun Shin

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Computers in biology and medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 740347

 Cone beam computed tomography (CBCT) is an emerging medical imaging technique to visualize the internal anatomical structures of patients. During a CBCT scan, several projection images of different angles or views are collectively utilized to reconstruct a tomographic image. However, reducing the number of projections in a CBCT scan while preserving the quality of a reconstructed image is challenging due to the nature of an ill-posed inverse problem. Recently, a neural attenuation field (NAF) method was proposed by adopting a neural radiance field algorithm as a new way for CBCT reconstruction, demonstrating fast and promising results using only 50 views. However, decreasing the number of projections is still preferable to reduce potential radiation exposure, and a faster reconstruction time is required considering a typical scan time. In this work, we propose a fast and accurate sparse-view CBCT reconstruction (FACT) method to provide better reconstruction quality and faster optimization speed in the minimal number of view acquisitions (<
  50 views). In the FACT method, we meta-trained a neural network and a hash-encoder using a few scans (= 15), and a new regularization technique is utilized to reconstruct the details of an anatomical structure. In conclusion, we have shown that the FACT method produced better, and faster reconstruction results over the other conventional algorithms based on CBCT scans of different body parts (chest, head, and abdomen) and CT vendors (Siemens, Phillips, and GE).
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH