Transforming the Landscape of Clinical Information Retrieval Using Generative AI: An Application in Machine Fault Analysis.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tyler Alfonzetti, Junyi Xia

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Practical radiation oncology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 740606

In a radiation oncology clinic, machine downtime can be a serious burden to the entire department. This study investigates using increasingly popular generative AI techniques to assist medical physicists in troubleshooting Linear Accelerator (LINAC) issues. Google's NotebookLM, supplemented with background information on LINAC issues/solutions was used as a Machine Troubleshooting Assistant for this purpose. Two board-certified Medical Physicists evaluated the LLM's responses based on hallucination, relevancy, correctness, and completeness. Results indicated that responses improved with increasing source data context and more specific prompt construction. Keeping risk-mitigation and the inherent limitations of AI in mind, this work offers a viable, low-risk method to improve efficiency in radiation oncology. This work uses a "Machine Troubleshooting Assistance" application to provide an adaptable example of how radiation oncology clinics can begin using generative AI to enhance clinical efficiency.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH