Single-cell transcriptome sequencing reveals the immune microenvironment in bronchoalveolar lavage fluid of checkpoint inhibitor-related pneumonitis.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Dingqin Cai, Xiewan Chen, Lingchen Li, Fenglin Lin, Yaxian Qi, Jianguo Sun, Lingyou Sun, Chenrui Yin, Longyao Zhang, Linpeng Zheng, Jianbo Zhu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : Cancer immunology, immunotherapy : CII , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 741063

BACKGROUND AND OBJECTIVES: Immune checkpoint inhibitors (ICIs) bring cancer patients tumor control and survival benefits, yet they also trigger immune-related adverse effects (irAEs), notably checkpoint inhibitor-related pneumonitis (CIP), affecting about 5% of patients among whom 1-2% experiencing severe grade 3 or higher pneumonitis. Current research points to potential links with T cell subset dysfunction and autoantibody increase, but the specific mechanisms underlying different grades of CIP are understudied. METHODS: Herein, we employed single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid (BALF) from CIP patients across varying severity levels, aiming to elucidate underlying immune environment and mechanisms of CIP progression at cellular and molecular levels. FINDINGS: Totally, 121,409 high qualified cells from BALF of 11 patients were annotated and categorized into five major cell types. Severe CIP (CIP-S) cases have a significant increase in the percentage of unreported epithelial cells in their bronchoalveolar lavage fluid compared with mild CIP (CIP-M) cases. These cells were defined as aberrant basaloid cells. They upregulated SOX9, increased the expression of CXCL3/5, recruited neutrophils, and activated the immune system. Additionally, macrophages in the CIP-S group had stronger antigen-presenting abilities and resulted in more CD8 + effective T cells infiltrated. CONCLUSIONS: Utilizing single-cell sequencing of BALF, we discovered an enriched population of aberrant basaloid cells in CIP-S patients, which had not been previously reported. Aberrant basaloid cells may upregulate SOX9 via CXCL3/5-CXCR2 to recruit and activate neutrophils, and further activate the immune system, resulting in CIP-S. This finding could identify new targets for stratified treatment of CIP patients, holding promise of a novel approach for clinical guidance.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH