Loss formulations for assumption-free neural inference of SDE coefficient functions.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Izdar Abulizi, Jan Hasenauer, Nina Schmid, Marc Vaisband, Valentin von Bornhaupt

Ngôn ngữ: eng

Ký hiệu phân loại: 332.632283 Investment

Thông tin xuất bản: England : NPJ systems biology and applications , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 741154

Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions via neural networks, we propose a novel formulation for an optimisation objective that combines simulation-based penalties with pseudo-likelihoods. This greatly improves prediction performance compared to the state-of-the-art, and makes it possible to learn a wide variety of dynamics without any prior assumptions on analytical structure.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH