Integrating evolutionary algorithms and enhanced-YOLOv8 + for comprehensive apple ripeness prediction.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yuchi Li, Zhigao Wang, Aiwei Yang, Xiaoqi Yu

Ngôn ngữ: eng

Ký hiệu phân loại: 794.147 King

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 741267

The assessment of apple quality is pivotal in agricultural production management, and apple ripeness is a key determinant of apple quality. This paper proposes an approach for assessing apple ripeness from both structured and unstructured observation data, i.e., text and images. For structured text data, support vector regression (SVR) models optimized using the Whale Optimization Algorithm (WOA), Grey Wolf Optimizer (GWO), and Sparrow Search Algorithm (SSA) were utilized to predict apple ripeness, with the WOA-optimized SVR demonstrating exceptional generalization capabilities. For unstructured image data, an Enhanced-YOLOv8+, a modified YOLOv8 architecture integrating Detect Efficient Head (DEH) and Efficient Channel Attention (ECA) mechanism, was employed for precise apple localization and ripeness identification. The synergistic application of these methods resulted in a significant improvement in prediction accuracy. These approaches provide a robust framework for apple quality assessment and deepen the understanding of the relationship between apple maturity and observed indicators, facilitating more informed decision-making in postharvest management.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH