Cerebrospinal fluid metabolomics, lipidomics and serine pathway dysfunction in myalgic encephalomyelitis/chronic fatigue syndroome (ME/CFS).

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: James N Baraniuk

Ngôn ngữ: eng

Ký hiệu phân loại: 612.825 Cerebrum

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 741297

We proposed that cerebrospinal fluid would provide objective evidence for disrupted brain metabolism in myalgic encephalomyelitis/chronic fatigue syndroome (ME/CFS). The concept of postexertional malaise (PEM) with disabling symptom exacerbation after limited exertion that does not respond to rest is a diagnostic criterion for ME/CFS. We proposed that submaximal exercise provocation would cause additional metabolic perturbations. The metabolomic and lipidomic constituents of cerebrospinal fluid from separate nonexercise and postexercise cohorts of ME/CFS and sedentary control subjects were contrasted using targeted mass spectrometry (Biocrates) and frequentist multivariate general linear regression analysis with diagnosis, exercise, gender, age and body mass index as independent variables. ME/CFS diagnosis was associated with elevated serine but reduced 5-methyltetrahydrofolate (5MTHF). One carbon pathways were disrupted. Methylation of glycine led to elevated sarcosine but further methylation to dimethylglycine and choline was decreased. Creatine and purine intermediates were elevated. Transaconitate from the tricarboxylic acid cycle was elevated in ME/CFS along with essential aromatic amino acids, lysine, purine, pyrimidine and microbiome metabolites. Serine is a precursor of phospholipids and sphingomyelins that were also elevated in ME/CFS. Exercise led to consumption of lipids in ME/CFS and controls while metabolites were consumed in ME/CFS but generated in controls. The findings differ from prior hypometabolic findings in ME/CFS plasma. The novel findings generate new hypotheses regarding serine-folate-glycine one carbon and serine-phospholipid metabolism, elevation of end products of catabolic pathways, shifts in folate, thiamine and other vitamins with exercise, and changes in sphingomyelins that may indicate myelin and white matter dysfunction in ME/CFS.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH