Natural language processing of electronic health records for early detection of cognitive decline: a systematic review.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Anjali Bundele, Amartya Mukhopadhyay, Ravi Shankar

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : NPJ digital medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 741338

This systematic review evaluated natural language processing (NLP) approaches for detecting cognitive impairment in electronic health record clinical notes. Following PRISMA guidelines, we analyzed 18 studies (n = 1,064,530) that employed rule-based algorithms (67%), traditional machine learning (28%), and deep learning (17%). NLP models demonstrated robust performance in identifying cognitive decline, with median sensitivity 0.88 (IQR 0.74-0.91) and specificity 0.96 (IQR 0.81-0.99). Deep learning architectures achieved superior results, with area under the receiver operating characteristic curves up to 0.997. Major implementation challenges included incomplete electronic health record data capture, inconsistent clinical documentation practices, and limited external validation. While NLP demonstrates promise, successful clinical translation requires establishing standardized approaches, improving access to annotated datasets, and developing equitable deployment frameworks.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH