Bladder cancer (BC) is one of the top ten most common tumors, with recurrence and metastasis being major causes of mortality among patients. A high recurrence rate is a hallmark of BC. Epithelial-mesenchymal transition (EMT) plays a role in the formation of cancer stem cells, tumor metastasis, and immune evasion. In our preliminary research, single-cell sequencing identified TCF7 as a gene associated with EMT. However, its biological function and transcriptional regulation mechanisms in BC remain unclear. This study aims to investigate TCF7's role and regulatory mechanisms in BC progression. TCF7 is a critical transcription factor promoting BC progression. High TCF7 expression in BC is significantly linked to poor patient prognosis. We uncovered a novel mechanism by which TCF7 drives EMT and stemness in BC through transcriptional regulation of TGFBR1, impacting the TGF-β/SMAD3 pathway. These findings enhance our understanding of BC progression and offer potential strategies for diagnosis, treatment, and prognosis.