PyPropel: a Python-based tool for efficiently processing and characterising protein data.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Adam P Cribbs, Jinlong Ru, Jianfeng Sun, Dapeng Xiong

Ngôn ngữ: eng

Ký hiệu phân loại: 629.133343 Aerospace engineering

Thông tin xuất bản: England : BMC bioinformatics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 741554

BACKGROUND: The volume of protein sequence data has grown exponentially in recent years, driven by advancements in metagenomics. Despite this, a substantial proportion of these sequences remain poorly annotated, underscoring the need for robust bioinformatics tools to facilitate efficient characterisation and annotation for functional studies. RESULTS: We present PyPropel, a Python-based computational tool developed to streamline the large-scale analysis of protein data, with a particular focus on applications in machine learning. PyPropel integrates sequence and structural data pre-processing, feature generation, and post-processing for model performance evaluation and visualisation, offering a comprehensive solution for handling complex protein datasets. CONCLUSION: PyPropel provides added value over existing tools by offering a unified workflow that encompasses the full spectrum of protein research, from raw data pre-processing to functional annotation and model performance analysis, thereby supporting efficient protein function studies.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH