Lactate accumulation from HIF-1α-mediated PMN-MDSC glycolysis restricts brain injury after acute hypoxia in neonates.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Chunling Chen, Yuxiong Guo, Yumei He, Shuyi Kuang, Laiqin Peng, Tianci Wang, Weibin Wu, Jiaxiu Ye, Xiaogang Zhang, Guilang Zheng, Shaowen Zuo

Ngôn ngữ: eng

Ký hiệu phân loại: 573.679 *Lactation

Thông tin xuất bản: England : Journal of neuroinflammation , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 741676

Fetal intrauterine distress (FD) during delivery can cause fetal intrauterine hypoxia, posing significant risks to the fetus, mother, and newborns. While studies highlight the role of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in neonatal diseases and tumor hypoxia, their specific involvement in newborns experiencing fetal distress during delivery (FDNB) is not well understood. Here, we found elevated PMN-MDSC activation, increased glycolysis, enhanced lactate production, and upregulated HIF-1α expression in the blood of FDNB neonates compared to healthy newborns (NNB). Importantly, PMN-MDSC levels were inversely correlated with neuron-specific enolase (NSE), a marker for neurological injury. In neonatal mice subjected to acute hypoxia, a 48-h exposure led to a shift from exacerbation to amelioration of brain damage when compared with a 24-h period. This change was associated with a reduction in microglial activation, a decrease in the expression of inflammatory factors within the microglia, alongside increased peripheral PMN-MDSC activation. Depleting PMN-MDSCs led to heightened microglial activation and aggravated brain injury. Mechanistically, enhanced activation of PMN-MDSCs promotes HIF-1α accumulation while enhancing glycolysis and lactate release, thereby mitigating neonatal brain injury. Notably, lactate supplementation in hypoxic mice rescued brain damage caused by insufficient PMN-MDSC activation due to HIF-1α deficiency. Our study clarifies the role of lactate in peripheral PMN-MDSCs after acute hypoxia and its effects on microglial activation and subsequent brain injury.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH