Tandem kinase proteins underlie the innate immune systems of cereal plants, but how they initiate plant immune responses remains unclear. This report identifies wheat protein wheat tandem NBD 1 (WTN1), a noncanonical nucleotide-binding leucine-rich repeat (NLR) receptor featuring tandem nucleotide binding adaptor shared by APAF-1, plant R proteins, and CED-4 (NB-ARC) domains, required for WTK3-mediated disease resistance. Both WTK3 and its allelic variant Rwt4-known for conferring resistance to wheat powdery mildew and blast, respectively-are capable of recognizing the blast effector PWT4. They activate WTN1 to form calcium-permeable channels, akin to ZAR1 and Sr35. Thus, tandem kinase proteins and their associated NLRs operate as "sensor-executor" pairs against fungal pathogens. Additionally, evolutionary analyses reveal a coevolutionary trajectory of the tandem kinase-NLR module, highlighting their cooperative role in triggering plant immunity.