Transcriptome analysis reveals the role of microbial volatile 3-methyl-1-butanol-induced salt stress tolerance in rice (Oryza sativa L.) seedlings through antioxidant defense system.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ching-Han Chang, Hao-Jen Huang, Yi-Rong Li, Chih-Cheng Lin, Thach-Thao Ly, Diem-Kieu Nguyen, Tri-Phuong Nguyen, Van-Anh Nguyen, Ngoc-Nam Trinh

Ngôn ngữ: eng

Ký hiệu phân loại: 790.06 Organizations dealing with and management of recreation

Thông tin xuất bản: France : Plant physiology and biochemistry : PPB , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 742367

 Microorganisms produce volatile organic compounds (VOCs) that have biological impacts on plants
  however, it is unknown how these molecules participate in plants' responses to abiotic stress. This study aimed to determine the potential benefit of 3-methyl-1-butanol (3 MB), a microbial VOC, in helping rice (Oryza sativa) seedlings suffering from salinity stress. Our study revealed that rice seedlings primed with microbial volatile 3 MB for 12 h before exposure to salinity stress could decrease reactive oxygen species (ROS) generation and cell damage in rice roots. Additionally, antioxidant systems such as peroxidase (POD) isozymes 4 and 5 and catalase 1 (CAT1) increased after treatment with 3 MB + NaCl. The microbial volatile 3 MB fumigation also raised the proline content and activated the proline-related genes under 3 MB + NaCl treatment. To further elucidate the molecular mechanisms by which 3 MB assists rice in tolerating salinity stress, transcriptomic analysis was used to investigate the genome-wide gene expressions. Totally, 287 up-regulated differentially expressed genes (DEGs) were found. They are associated with phytohormone regulation, transcription factors, redox signaling, and defense responses. Through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and MapMan enrichment results of DEGs revealed that 3 MB could activate antioxidant systems, jasmonic acid (JA) pathway, and starch biosynthesis to generate more ATP, thus building a line of defense in response to salinity stress. This study provides valuation information indicating that microbial volatile 3 MB vapor can enhance salt stress tolerance in rice seedlings and clarify its underlying mechanism.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH