Soil salinity substantially limits agricultural productivity, necessitating a sound understanding of salt-tolerance mechanisms in key crops for their improved breeding. Despite being a staple sugar crop with strong salt tolerance, sugar beet (Beta vulgaris L.), remains underexplored for its transcriptional responses to salt shock. This study compared the physiological traits, root structure, and full-length transcriptomes of salt-tolerant (T510) and salt-sensitive (S210) sugar beet varieties during stages of osmotic stress (0-24 h) and ionic stress (1-7 d) after incurring salt shock. The results show that T510 recovered faster, maintaining a higher water potential (WP), better osmotic regulation, lower reactive oxygen species (ROS) levels, and a balanced Na