Self-powered broadband photodetectors utilizing 2D transition metal dichalcogenides (TMDs) are highly promising due to their remarkable light absorption capabilities and high sensitivity, making them suitable for applications such as military surveillance and wireless light detection systems. However, their performance is constrained by inadequate absorption, suboptimal charge carrier separation, and slow response times. In response to these limitations, the study fabricates a self-powered photodetector employing a heterostructure composed of WS