scVAEDer: integrating deep diffusion models and variational autoencoders for single-cell transcriptomics analysis.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Anita Layton, Mehrshad Sadria

Ngôn ngữ: eng

Ký hiệu phân loại: 020.601 International organizations

Thông tin xuất bản: England : Genome biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 742571

Discovering a lower-dimensional embedding of single-cell data can improve downstream analysis. The embedding should encapsulate both the high-level features and low-level variations. While existing generative models attempt to learn such low-dimensional representations, they have limitations. Here, we introduce scVAEDer, a scalable deep-learning model that combines the power of variational autoencoders and deep diffusion models to learn a meaningful representation that retains both global structure and local variations. Using the learned embeddings, scVAEDer can generate novel scRNA-seq data, predict perturbation response on various cell types, identify changes in gene expression during dedifferentiation, and detect master regulators in biological processes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH