CellPie: a scalable spatial transcriptomics factor discovery method via joint non-negative matrix factorization.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Amin Ali, Syed-Murtuza Baker, Robert G Bristow, Sokratia Georgaka, Mohamed Ghafoor, Mudassar Iqbal, Diego Sanchez Martinez, William Geraint Morgans, Magnus Rattray, Qian Zhao

Ngôn ngữ: eng

Ký hiệu phân loại: 965.054 1992-

Thông tin xuất bản: England : Nucleic acids research , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 742825

Spatially resolved transcriptomics has enabled the study of expression of genes within tissues while retaining their spatial identity. Most spatial transcriptomics (ST) technologies generate a matched histopathological image as part of the standard pipeline, providing morphological information that can complement the transcriptomics data. Here, we present CellPie, a fast, unsupervised factor discovery method based on joint non-negative matrix factorization of spatial RNA transcripts and histological image features. CellPie employs the accelerated hierarchical least squares method to significantly reduce the computational time, enabling efficient application to high-dimensional ST datasets. We assessed CellPie on three different human cancer types with different spatial resolutions, including a highly resolved Visium HD dataset, demonstrating both good performance and high computational efficiency compared to existing methods.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH