Self-powered integrated systems that leverage micro-supercapacitors as power sources for sensors are vital for portable and wearable electronics
however, they often encounter compatibility issues arising from bifunctional active materials that enable high energy storage capacity and sensing performance. Herein, a spatial confinement approach is proposed for designing in situ-encased silver nanoparticles within a 3D porous laser-induced graphene framework (LIG/Ag), which serves as a bifunctional active material for all-in-one supercapacitor-sensor systems. Such engineered LIG/Ag features ample pseudocapacitive active sites, high electrical conductivity, and fast ion diffusion channels, which favor high reaction kinetics and electrode material utilization, significantly improving its electrochemical reactivity. Flexible symmetric supercapacitors (FCSs) assembled with an optimized LIG/Ag achieve a high energy density of 0.27 µWh cm