The ongoing demand for more energy-efficient, high-performance electronics is driving the exploration of innovative materials and device architectures, where interfaces play a crucial role due to the continuous downscaling of device dimensions. Tellurium (Te), in its 2D form, offers significant potential due to its high carrier mobility and ambipolar characteristics, with the carrier type easily tunable via surface modulation. In this study, atomically controlled material transformations in 2D Te are leveraged to create intimate junctions, enabling near-ideal field-effect transistors (FETs) for both n-type and p-type operation. A NiTe