ConspectusEnantioselective catalysts that exhibit broad generality are disruptive innovators in contemporary synthesis and are considered to be "privileged" on account of their expansive reactivity/selectivity profiles. Operating in the ground state, these species simultaneously regulate reactivity and orchestrate the translation of chiral information with exquisite efficiency: achieving parity in higher-energy (excited-state) scenarios remains a frontier in contemporary catalysis. Advancing this field will require new structure-activation guidelines to be delineated that reflect the energetic realities of achieving chiral induction in non-ground-state environments, thereby expediting the discovery of privileged photocatalysts. Earth-abundant aluminum-salen (Al-salen) complexes, which have a venerable history in ground-state enantioselective catalysis, show great promise in reconciling this disparity on account of their well-defined photophysical properties. In this Account, the potential of these catalysts in engaging various substrates via discrete activation modes to furnish optically enriched products with high levels of reliability is discussed. The deployment of commercial Al-salen complexes in the single electron transfer (SET)-enabled deracemization of cyclopropyl ketones is an exemplar. Irradiation of a commercial Al-salen complex augments the function of the catalyst to enable efficient deracemization (up to 98:2