This study investigates the factors influencing the imprinting performance of molecularly imprinted hybrids (MIHs) with various template/monomer associations and their corresponding adsorption ability for three bisphenol analogues, bisphenol A (BPA), 2,2'-bisphenol F (2BPF), and 4,4'-bisphenol F (4BPF). Styrene (St) and methacrylic acid (MAA) were selected as the primary functional monomers for template complexation. Compared with hydrophilic MAA monomers, hydrophobic St monomers were more favorable for BPA imprinting, despite the lower binding energy of π-π interactions compared to hydrogen bonds. However, St monomers were unsuitable for 4BPF imprinting, while 2BPF exhibited limited complexation with MAA monomers. Among the bisphenols, BPA demonstrated the strongest imprinting capability, leading MIHs to exhibit the highest imprinting factor (IF = 14-18), adsorption capacity (