In this study, we introduce a set of coarse-grained (CG) force field parameters for simulating a series of 6FDA-based polyimides. Utilizing atomistic descriptors, we developed CG models that accurately predict the specific volume of the polymers under investigation. Our findings suggest that certain parameters, particularly those associated with specific diamines, can be employed to predict properties such as density using a multiple linear regression. Our study further explores the halogenation of diamines and proposes methods for estimating intermolecular interaction parameters. Our calculations refer to various structural properties, including the radius of gyration, end-to-end distance, glass transition temperature, and diffusion coefficients. Utilizing the newly developed CG force field parameters, we conducted gas separation simulations for 6FDA-DAM polyimide, particularly to predict both sorption- and diffusion-separation mechanisms within the polymer. These simulations provided excellent agreement with experimental data on solubility, diffusion, and permeability selectivity for CO