Developing conductive hydrogels has led to significant advancements in bioelectronics, especially in the realms of neural interfacing and neuromodulation. Despite this progress, the synthesis of hydrogels that simultaneously exhibit superior mechanical stretchability, robust bioadhesion, and high conductivity remains a significant challenge. Traditional approaches often resort to high filler concentrations to achieve adequate electrical conductivity, which detrimentally affects the hydrogel's mechanical integrity and biocompatibility. In this study, we present a multifunctional conductive hydrogel, designated as PAACP, which is engineered from a polyacrylamide-poly(acrylic acid) (PAM-PAA) matrix and enhanced with polydopamine-modified carbon nanotubes (CNT-PDA). This composition ensures an exceptional conductivity of 9.52 S/m with a remarkably low carbon nanotube content of merely 0.33 wt %. The hydrogel exhibits excellent mechanical properties, including low tensile modulus (∼100 kPa), high stretchability (∼1000%), and high toughness (7.33 kJ m