Identification of Subtypes of Post-Stroke and Neurotypical Gait Behaviors Using Neural Network Analysis of Gait Cycle Kinematics.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: James M Finley, Andrian Kuch, Alison McKenzie, Natalia Sanchez, Nicolas Schweighofer, Yuxin Wen

Ngôn ngữ: eng

Ký hiệu phân loại: 133.526 First six signs

Thông tin xuất bản: United States : IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 745437

Gait impairment post-stroke is highly heterogeneous. Prior studies classified heterogeneous gait patterns into subgroups using peak kinematics, kinetics, or spatiotemporal variables. A limitation of this approach is the need to select discrete features in the gait cycle. Using continuous gait cycle data, we accounted for differences in magnitude and timing of kinematics. Here, we propose a machine-learning pipeline combining supervised and unsupervised learning. We first trained a Convolutional Neural Network and a Temporal Convolutional Network to extract features that distinguish impaired from neurotypical gait. Then, we used unsupervised time-series k-means and Gaussian Mixture Models to identify gait clusters. We tested our pipeline using kinematic data of 28 neurotypical and 39 individuals post-stroke. We assessed differences between clusters using ANOVA. We identified two neurotypical gait clusters (C1, C2). C1: normative gait pattern. C2: shorter stride time. We observed three post-stroke gait clusters (S1, S2, S3). S1: mild impairment and increased bilateral knee flexion during loading response. S2: moderate impairment, slow speed, short steps, increased knee flexion during stance bilaterally, and reduced paretic knee flexion during swing. S3: mild impairment, asymmetric swing time, increased ankle abduction during the gait cycle, and reduced dorsiflexion bilaterally. Our results indicate that joint kinematics post-stroke are mostly distinct from controls, and highlight kinematic impairments in the non-paretic limb. The post-stroke clusters showed distinct impairments that would require different interventions, providing additional information for clinicians about rehabilitation targets.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH