Using MOFs in powder form leads to mass transfer limitations and large pressure drops in packed bed adsorbers. Use of MOF/aerogel composites (called MOFACs) in bead form could overcome these challenges without compromising the MOF's adsorption performance, as observed with other shaping methods, such as the use of polymeric binders. In this study, Ca-alginate-aerogel-MIL-160(Al) MOFACs (AlgMIL160) were prepared via sol/gel-assisted direct mixing methods, followed by supercritical drying. The gas sorption, powder X-ray diffraction, FTIR, and scanning electron microscopy characterization results showed that the MOF was successfully incorporated into the aerogel, while the MOF structure was preserved. Adsorption measurements were carried out in both static single-component and dynamic binary gas mixture modes. Obtained isotherms were successfully fitted to the Langmuir model followed by ideal adsorbed solution theory (IAST). The single-component gas adsorption isotherms of CO