VCP's nuclear journey: Initiated by interacting with KPNB1 to repair DNA damage.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xiaoying Cai, Jun He, Ting He, Na Li, Peiheng Li, Ruixi Li, Zhihui Li, Li Mi, Yuxuan Qiu, Anping Su, Wenshuang Wu, Zhichao Xing, Haoyu Ye, Jingqiang Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: United States : Proceedings of the National Academy of Sciences of the United States of America , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 745477

DNA damage repair (DDR) is essential for cancer cell survival and treatment resistance, making it a critical target for tumor therapy. The eukaryotic AAA+ adenosine triphosphatase valosin-containing protein (VCP), which is transported from the cytoplasm into the nucleus, plays a critical role in the DDR process. However, the nuclear translocation and molecular mechanism of VCP for DDR remain elusive. Here, we define VCP as a KPNB1 interacting protein through a combination of chemical and immunoprecipitation mass spectrometry approaches. Further biochemical studies elucidate that KPNB1 directly transports VCP into the nucleus. We also identify withaferin A (WA) as a small molecule that can retard VCP nuclear localization via covalent binding to CYS 158 of KPNB1. Further studies verify WA as an effective antitumor drug candidate via blocking VCP nuclear localization to impact on the DDR pathway in vivo. Our findings underly the unclear VCP's role in DDR in a KPNB1-dependent manner and provide an important theoretical basis for developing small-molecule inhibitors targeting this process.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH