Neuroimmune signaling mediates astrocytic nucleocytoplasmic disruptions and stress granule formation associated with TDP-43 pathology.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Daniel Barnett, Elisa Giacomelli, Evelyn J Hardin, Stephanie Jackvony, Noopur Khobrekar, Adam L Orr, Anna G Orr, Lorenz Studer, Constance Zhou, Till S Zimmer

Ngôn ngữ: eng

Ký hiệu phân loại: 155.332 Masculinity

Thông tin xuất bản: United States : Neurobiology of disease , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 745483

Alterations in transactivating response region DNA-binding protein 43 (TDP-43) are prevalent in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neurological disorders. TDP-43 influences neuronal functions and might also affect glial cells. However, specific intracellular effects of TDP-43 alterations on glial cells and underlying mechanisms are not clear. We report that TDP-43 dysregulation in mouse and human cortical astrocytes causes nucleoporin mislocalization, nuclear envelope remodeling, and changes in nucleocytoplasmic protein transport. These effects are dependent on interleukin-1 (IL-1) receptor activity and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and are associated with the formation of cytoplasmic stress granules. Stimulation of IL-1 receptors and NF-κB signaling are necessary and sufficient to induce astrocytic stress granules and rapid nucleocytoplasmic changes, which are broadly alleviated by inhibition of the integrated stress response. These findings establish that TDP-43 alterations and neuroimmune factors can induce nucleocytoplasmic changes through NF-κB signaling, revealing mechanistic convergence of proteinopathy and neuroimmune pathways onto glial nucleocytoplasmic disruptions that may occur in diverse neurological conditions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH