Machine Learning-Enabled Time-Resolved Nanozyme-Encoded Recognition of Endogenous Mercaptans for Disease Diagnosis.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xinyu Chen, Hao Liang, Jinjin Liu, Shuangquan Liu, Xiangheng Niu, Jiayi Peng, Zheng Tang

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: United States : Analytical chemistry , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 745496

With their important role in regulating intracellular redox balance and maintaining cell homeostasis, endogenous mercaptans are recognized as biomarkers of many diseases in clinical practice, and thus establishing efficient yet simple methods to distinguish and quantify endogenous mercaptans is of great significance for health management. Here, we propose a machine learning-enabled time-resolved nanozyme-encoded strategy to identify endogenous mercaptans in the presence of potential interferents for disease diagnosis. Diethylenetriaminepenta(methylenephosphonic) acid was first employed to coordinate with Mn
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH