The acidic tumor microenvironment is a common feature of tumors, and boric acid-functionalized quantum dots (BA-QDs) exhibit pH-sensitive boron affinity effects and fluorescence emission characteristics. In this study, CdTe QDs were prepared using the water phase synthesis method. Additionally, BA-QDs were prepared by modifying QDs with 4-mercaptophenylboric acid. Hesperetin, baicalein, quercetin, and other model drugs were used, with QDs and BA-QDs serving as carriers, to create a drug-loaded system of QDs with tumor microenvironment-responsive drug release performance. The physical and chemical properties were characterized using dynamic light scattering (DLS), Fourier transform infrared spectroscopy, transmission electron microscopy, x-ray diffraction, etc. Our findings showed that the synthesis of drug-loaded QDs with a uniform particle size was successful. The experiments involved studying the adsorption kinetics of the QDs and the degree of dissolution of the drug-loaded QDs